
LECTURE- 7

Principles of

Operating Systems

 USER LEVEL AND KERNEL LEVEL

THREADS

Threads

 Processes do not share resources well
 high context switching overhead

 Idea: Separate concurrency from protection

 Multithreading: a single program made up of a number of
different concurrent activities

 A thread (or lightweight process)
 basic unit of CPU utilization; it consists of:

 program counter, register set and stack space

 A thread shares the following with peer threads:

 code section, data section and OS resources (open files, signals)

 No protection between threads

 Collectively called a task.

 Heavyweight process is a task with one thread.

Single and Multithreaded Processes

 Threads encapsulate concurrency: “Active” component

 Address spaces encapsulate protection: “Passive” part

 Keeps buggy program from trashing the system

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

Threads(Cont.)

 In a multiple threaded task, while one server

thread is blocked and waiting, a second

thread in the same task can run.
 Cooperation of multiple threads in the same job confers

higher throughput and improved performance.

 Applications that require sharing a common buffer (i.e.

producer-consumer) benefit from thread utilization.

 Threads provide a mechanism that allows

sequential processes to make blocking

system calls while also achieving parallelism.

Thread State
 State shared by all threads in process/addr

space

 Contents of memory (global variables, heap)

 I/O state (file system, network connections, etc)

 State “private” to each thread

 Kept in TCB  Thread Control Block

 CPU registers (including, program counter)

 Execution stack

 Parameters, Temporary variables

 return PCs are kept while called procedures are

executing

Threads (cont.)

 Thread context switch still requires a register

set switch, but no memory management

related work!!

 Thread states -
 ready, blocked, running, terminated

 Threads share CPU and only one thread can

run at a time.

 No protection among threads.

Examples: Multithreaded programs
 Embedded systems

 Elevators, Planes, Medical systems, Wristwatches

 Single Program, concurrent operations

 Most modern OS kernels

 Internally concurrent because have to deal with

concurrent requests by multiple users

 But no protection needed within kernel

 Database Servers

 Access to shared data by many concurrent users

 Also background utility processing must be done

More Examples: Multithreaded programs

 Network Servers

 Concurrent requests from network

 Again, single program, multiple concurrent operations

 File server, Web server, and airline reservation systems

 Parallel Programming (More than one physical CPU)

 Split program into multiple threads for parallelism

 This is called Multiprocessing

Real operating systems have either

 One or many address spaces

 One or many threads per address space

Mach, OS/2, Linux

Windows 9x???

Win NT to XP, Solaris,
HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)

JavaOS, Pilot(PC)

Traditional UNIX
MS/DOS, early

Macintosh

Many

One

threads

Per AS:

Many One

#
 o

f
a

d
d

r
s
p

a
c
e

s
:

Types of Threads

 Kernel-supported threads (Mach and OS/2)

 User-level threads

 Hybrid approach implements both user-level

and kernel-supported threads (Solaris 2).

Kernel Threads

 Supported by the Kernel
 Native threads supported directly by the kernel

 Every thread can run or block independently

 One process may have several threads waiting on different things

 Downside of kernel threads: a bit expensive
 Need to make a crossing into kernel mode to schedule

 Examples

 Windows XP/2000, Solaris, Linux,Tru64 UNIX,

Mac OS X, Mach, OS/2

User Threads

 Supported above the kernel, via a set of library calls
at the user level.

 Thread management done by user-level threads library
 User program provides scheduler and thread package

 May have several user threads per kernel thread

 User threads may be scheduled non-premptively relative to
each other (only switch on yield())

 Advantages
 Cheap, Fast

 Threads do not need to call OS and cause interrupts to kernel

 Disadv: If kernel is single threaded, system call from any
thread can block the entire task.

 Example thread libraries:
 POSIX Pthreads, Win32 threads, Java threads

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

 Many user-level threads mapped to single

kernel thread

 Examples:

 Solaris Green Threads

 GNU Portable Threads

One-to-One

 Each user-level thread maps to kernel thread

Examples

 Windows NT/XP/2000; Linux; Solaris 9 and later

Many-to-Many Model
 Allows many user level

threads to be mapped to

many kernel threads

 Allows the operating

system to create a

sufficient number of

kernel threads

 Solaris prior to version 9

 Windows NT/2000 with

the ThreadFiber package

